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Almtra&-An analysis is ma& of the thermal processes associated with the presence of a local heat sink 
(or source) on the convectively cooled surface of a solid. The sink is due to the presence of a surface- 
mounted thermocouple, a pin fin or other surface-mounted conductors. In the first part of the paper, 
heat transfer results and temperature distributions for the solid are determined ingeneral, without reference 
to specific applications. The results are then applied to the case of the surface-mounted thermocouple, 
and the error in the measured temperature owing to the presence of the thermocouple is evaluated. Appli- 
cation is also made to pin fins and other surface-mounted conductors, and heat transfer rates are calculated 
taking into account the depression of the base temperature owing to the interaction of the fin (or conductor) 
and the solid. It is found that the conventional calculation which neglects the base temperature depression 
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overestimates the heat transfer rates. 

NOMENCLATURE 

heat transfer areas of finite volume 
element ; 
, e, coefficients in equation (12) ; 
Biot number, hr,/k ; 

local surface heat flux ; 
thermal resistance, equation (21); 
radial coordinate ; 
radius of circular contact region ; 
temperature ; 

inhomogeneous factor in equation (12) ; 
heat transfer coefficient ; 
thermal conductivity of solid ; 
conductivity-area product for cylin- 
drical conductor, see equation (21); 
length of cylindrical conductor ; 
heat transfer rate from pin fin or 
cylindrical conductor ; 

undisturbed temperature distribution, 
equation (1) ; 
temperature of surface area 0 < r < r0 ; 
undisturbed surface temperature ; 
ambient temperature ; 
axial coordinate along thermocouple ; 
dimensionless axial coordinate in solid, 

sIr0 ; 
axial coordinate in solid. heat transfer rate from tin or conductor 

neglecting base temperature depres- 
sion ; Greek symbols 
rate of heat transfer passing through 9,& 
surface area 0 < T < ro, equation (16) ; 
dimensionless heat transfer rate associ- p, 
ated with the disturbance temperature cp, 4, 
field, equation (16) ; 7.9 
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dimensionless disturbance tempera- 
ture, equation (2) ; 
dimensionless radial coordinate, r/r0 ; 
angular coordinate ; 
conductance ratio, equation (24). 
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Subscripts 
f; -fin, 
kj, value at nodal point i, j; 
surf, value at surface. 

INTRODUCTION 
THIS paper is concerned with the heat transfer 
processes and attendant temperature field associ- 
ated with the presence of a cylindrical heat 
conductor affixed to the convectively cooled 
surface of a solid. The conductor itself may 
exchange heat with the fluid environment, 
either directly or through a layer of insulation. 
Such a physical situation is illustrated schemati- 
ally in Fig. l(a). The cylindrical conductor may 
be either straight or curved*, either insulated or 
uninsulated. 

measurement accuracy, thermocouple installa- 
tions that are more or less similar to that of 
Fig. l(a) are quite common in practice. Typically, 
a thermocouple installed in this way conducts 
heat away from the surface at a greater rate than 
that associated with the convective exchange 
between the surface and the fluid environment. 
As a consequence, the presence of the thermo- 
couple causes a local depression of the tempera- 
ture of the solid, with the result that the thermo- 
couple output is not indicative of the surface 
temperature of the undisturbed solid. 

In addition to the determination of errors in 
surface temperature measurement, the results of 
the present analysis are applicable to the heat 
transfer and temperature fields associated with 
surface-mounted cylindrical heat conductors 

(a) (b) 

FIG. 1. Schematic representation of the physical situation. 

Consideration of the aforementioned problem 
is motivated by, among other applications, the 
measurement of surface temperature of solids. 
The measurement may be performed by a 
thermocouple affixed to the surface. Although 
by no means optimal from the standpoint of 

* The radius of curvature must be large compared with 
the radius of the conductor. 

in general. In particular, the heat transfer from 
pin fins can be evaluated, taking account of the 
depression of the fin base temperature owing to 
the presence of the fin. 

The analysis presented herein is carried out 
for steady-state operating conditions. In formu- 
lating the problem, it is assumed that the di- 
mensions of the solid are large compared with 
the radius of the circle of contact of the surface 
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with the conductor. In reality, as demonstrated 
by the results, the solid need not be very large 
to fall within the framework of the analysis. In 
the formulation, it is also assumed that the 
conductor has sufficiently high thermal conduc- 
tivity and/or sufficiently small cross section 
so that the temperature of the surface within 
the circle of contact is spatially uniform. 

There appears to be very little in the published 
literature that bears directly on the subject 
matter of the present investigation. An analysis 
of the transient response of a sofas-mounted 
the~ocouple affixed to a semi-in~nite body is 
reported in [ 11, the analytical model being 
spatially one-dimensional and, therefore, not 
closely related to the present two-dimensional 
formulation and solution. The steady-state heat 
flow through a circular isothermal zone on the 
otherwise insulated surface of a semi-infinite 
solid is determined by an elegant analysis in 
[2]. The insulated surface condition is a special 
case of the convective boundary condition 
treated herein, so that a limited comparison of 
results can be made. 

A variety ofphysical situations, other than that 
investigated here, have been treated in the litera- 
ture on thermocouple-related heat conduction. 
A sampling of such literature is discussed below. 
The case of a thermocouple affixed to a thin, 
convectively cooled plate was investigated in 
[3-5) with a view to assessing the conduction- 
induced measurement error under steady-state 
conditions.* A similar study is reported in [6] 
for a radiation-cooled plate. [7, 81 deal with 
the~o~ouple installations in transient problems 
characterized by prescribed surface heat flux, 
respectively for a surface-mounted thermocouple 
and an imbedded thermocouple. 

In the formulation that follows, the heat 
transfer processes in the solid and in the con- 
ductor are, at first, decoupled. The decoupling 
is achieved by assigning a temperature T&j N 

* It was verified that for those aspects for which com- 
parisons are possible, tbe results of the references are in 
qualitative amord with those found here. 

junction) to the surface of the solid that lies 
within the circle of contact. Although actually 
unknown, the junction temperature Tj can, 
from the standpoint ofthe heat transfer processes 
in the solid, be provisionally regarded as known. 
Solutions for the solid are then carried out and 
relevant results reported. With this information, 
the thermal interaction between the solid and 
the conductor is analyzed. Results are evaluated 
and presented for the difference between the 
junction temperature and the temperature of the 
surface in the absence of the conductor. In the 
case of a surface mounted the~ocouple, the 
aforementioned temperature difference is the 
measurement error owing to the presence of 
the thermocouple. Heat transfer results for pin 
tins and for general cylindrical conductors, 
including the effects of surface temperature 
depression, are also presented. 

LOCAL HEAT SINK ON A CONVECTIVELY 
COOLED SURFACE 

In accordance with the just~iscussed de- 
coupling, consideration is now given to the heat 
transfer processes in the system pictured in Fig. 
I(b). On the surface of the solid, the temperature 
within a circle of radius r. is prescribed to be 
uniform and equal to q. Outside this circle, the 
surface exchanges heat by convection with a 
fluid having heat transfer coefficient h and 
temperature T,. 

Let Tw be the spatially uniform surface tem- 
perature in the absence of the local heat sink, 
that is, for the case in which r. = 0. When the 
heat sink is in place, the tem~rature field in 
the solid will, at large values of the coordinate r, 
asymptotically approach that which exists in 
the absence of the sink. Therefore, for the case 
in which heat sink is in place, the specification 
of T, serves to specify the behavior of the tem- 
perature field at large r. 

Spherical coordinates are employed herein 
in the formulation and solution of the problem, 
with I representing the radial distance and v, the 
cone angle. Owing to symmetry, there is no 
dependence on the bud angle. The z 
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coordinate, normal to the plane of the surface, (h/k)!J. Also, at large r, 9 + 0. The formal 
is also shown in the figure. statement of the boundary conditions is 

In formulating the problem, it is advantageous 
to work with a temperature variable which is 
the difference between the temperature fields 
corresponding to the presence and to the absence 
of the local surface heat sink. In physical terms, 
such a variable represents the temperature field 
of the disturbance caused by the presence of the 
sink. Furthermore, as will be demonstrated 
shortly, the dimensionless disturbance tem- 
perature field is independent of all of the given 
temperatures T,, T, and Tj, an outcome which 
is highly favorable from the standpoint of 
practical computation. 

9 = 1 

forOdp<landcp=n/2(Z=O) (4a) 

aslaz = ~'9 
forp> landcp=rc/2(2=0) 

9 + 0 

(4b) 

as p + co for all cp 

where 

(4c) 

p = r/r,, Z = z/ro, Bi = hr,/k. (5) 

Inspection of equations (3) and (4) indicates 
To begin, it may be recognized that in the 

absence of the surface heat sink, the temperature 
field T(z) is given by 

that the dimensionless temperature distribution 
9 depends only on a single parameter, the Biot 
number Bi = hr,/k. It appears that amongst 
all finite Biot numbers, only the case of Bi = 0 
(insulated surface) admits an analytical solution 
[2]. However, in employing this solution to 
determine 9 at any point (r, cp) in the solid, it 
is necessary to numerically evaluate an integral 
over the range of a dummy variable from zero 
to infinity ; furthermore, the integration must 
be repeated at every point at which the tem- 
perature is desired. Fortunately, the solution 
yields a simple expression for the overall heat 
flux crossing the circular region 0 < r < ro, 
z = 0. 

T’(z) = ; (T, - T,) + T,. 

Next, the temperature field T(r, cp) correspond- 
ing to the presence of the heat sink is reduced by 
i’ and made dimensionless relative to (?; - T,), 
that is 

= T - KWW CL - T,) + T,] 
- _ (2) 
‘1; - 1 w 

The temperature distribution T(r, cp) must 
satisfy Laplace’s equation, and it is readily 
demonstrated that the disturbance distribution 
S(r, cp) must also satisfy this same equation, so 
that in spherical coordinates (with p = r/ro) 

$$$)+&$si+)=O. (3) 

Within the circular region 0 < I < r. on the 
surface, where T = Tj and T = T,, the 9 variable 
is unity. Furthermore, the convective condition 
-k(aT/az) = h(T, - T), which applies at sur- 
face locations r > ro, transforms to a9/az = 

For finite values of the Biot number other 
than zero, it is necessary to solve equations 
(3) and (4) by numerical means. A f’mite-dif- 
ference approach, incorporating variable mesh 
spacing and making use of the method of 
extrapolated iterations, was employed to ob- 
tain the solutions. On the basis of preliminary 
computational experiments, it was found that 
very rapid changes in 9 occur in the vicinity 
of r = r. and cp = 71.12. To insure high accuracy 
in this region as well as to generally permit 
the local concentration of mesh points to be 
varied according to the local characteristics 
of the temperature field, the finite-difference 
form of the energy equation was written with 
variable step sizes in both r and CJX 
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Since ~nite~ifferen~ fo~ulations in spheri- 
cal coordinate systems are not commonly 
encountered in the literature, the derivation of 
the appropriate difference equations will now 
be outlined. In the derivation, the relevant heat 
transfer areas (i.e. normal to the directions of 
heat flow) are expressed without approxima- 
tion As will be discussed later, other dis- 
cretization procedures yield only approximate 
representations of the heat transfer areas. 

The trace in any meridional plane of the grid 
structure at a typical interior point* is shown 
in Fig. 2(a). The shaded element, which appears 

A, = 274~~ - $Ap’,” [cos (cpo - iA@) 

- cos (q,, + +A@‘)] (6) 

and similarly for A,, with p,, - $Ap’ replaced 
by p. + %Ap”. Furthermore, the exact repre- 
sentation of the area for heat flow normal to 
the surface ad (i.e. flow in the tangential direc- 
tion) is 

A 
ad 

_AP +-API' 
2 

[~PO + !#P" - A~‘11 

x sin (cp, - *A#) (7) 

(0) (b) 

FIG. 2. Configuration and nomenclature for typical nodal points. 

plane in the figure, is actually toroidal, spanning with an identical expression being applicable 
the entire 2z degrees of the azimuthal angle. for A, provided that (p. - iA@ is replaced by 
The area for heat flow normal to the surface ab ‘p. + +A$‘. 
(i.e. flow in the radial direction) is expressed Then, in terms of the aforementioned areas 
without approximation as and of distances shown in Fig. 2(a) and using 

central differences for the participating tem- 
* Except points on the line cp = 0. perature derivatives, the fmite-difference form 
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of the energy equation at point 0 may be The participating difference equations were 
written as solved by the method of extrapolated itera- 

9, = ~91(A,dlW’) + ~~,(A,/P&P”) + %(&/Apt) + S,(~,,,/p,b@) 

(A,,/&“) + (A,,lwW’) + (A,JAp’) + (A,dp,Acp’) 

A special difference equation applies for interior points situated on the line cp = 0, which is a 
line of symmetry. The trace of the typical grid pattern relevant to such points is shown in Fig. 2(b). 
The volume element actually surrounding point 0 is that obtained by revolving the shaded element 
abed about the symmetry axis. The lines ad and bc lie on a conical surface whose area is 

A TC con = “’ : “” [2p, + %Ap” - Ap’)] sin $-, (9) 

The expressions for A,, and A,, have a form similar to that of equation (6), but now the quantity 
in brackets is replaced by [ 1 - cos (Aq/2)]. By employing these areas and central differences for 
the derivatives, the energy balance for the element surrounding point 0 is 

(10) 

Attention will now be turned to points on the surface of the solid which exchange heat by con- 
vection with the environment and where the boundary condition (4b) applies. The corresponding 
finite-difference grid is illustrated in Fig. 2(c). The area Aob is given by equation (6) when the quantity 
in brackets is replaced by sin (641/2) ; a similar modification is made to adapt the corresponding 
expression for A,,. Equation (7) for Aod continues to apply with cpO = n/2, and this same equation 
with the sine factor replaced by unity gives A,,. With this information and with the boundary 
condition (4b), the finite-difference equation for point 0 is 

%(&/AP”) + ULlA.p’) + ~~,C&il~oW 

I90 = (&/AP") + &,/AP') + bL,/~,Acp) + Adi’ 
(11) 

Equations that are similar, but not identical, 
to (8), (10) and (11) can be derived by starting 
with the differential equation (3) and represent- 
ing the derivatives appearing therein by central 
differences. However, the difference equations 
derived by such a procedure contain approxima- 
tions that are not made in equations (8), (9) 
and (11). These approximations arise from the 
fact that when the differencing procedure is 
applied, the differential heat transfer areas 
contained in equation (3) do not lead to exact 
representations for finite heat transfer areas. 
Therefore, the equations derived in the preced- 
ing paragraphs are more faithful to the tinite- 
difference model than are those obtained from 
the discretization of the differential equation (3). 

tions,* which will now be briefly outlined. 
Suppose that the mesh points are arranged in 
columns and rows, respectively indexed by i 
and j. The prototype difference equation, ap- 
plicable at any point i, j, is 

9i.j = ai,jSi+,,j + bi,j9i_l,j + ci,jgi,j+l 

+ di,jgi,j-1 + ei,jFi,j (12) 

where the coefticients a, . . . , d are readily 
identified by comparison with equations (8), 
(10) and (11). For mesh points characterized by 

* This procedure is sometimes called the method of 
successive overrelaxations in the literature on numerical 
analysis. However, the word overrelaxation has another 
meaning in the heat transfer literature. To avoid confusion, 
no further mention will be made here of overrelaxation. 
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0 < P < 1 and 9 = Iti;! - Aq, ei,Pi,j is an 
inhomogeneous term related to the boundary 
condition (4a). At all other mesh points 
e,,pi, j = 0. 

Envision the grid being swept in a regular 
pattern, say, in the same direction along suc- 
cessive rows. After N sweeps, the temperatures 
#” at all points are known. Suppose that the 
(N + 1)th sweep is in progress and that 8:;’ is 
about to be calculated, the temperatures 8y1!i 
s?_+ 1 . 
‘ 2,j' * + * f 

g*_' 
r,j I* . . . having already been 

determined. Define a tentative temperature 
value B as 

,IjN?’ 1.J =I: Ui, j#!+ 1, j + bi, j*?~L?~f j + Ci, 18: j+ 1 

+ di,,#1’_‘1 + ei,jFi,j (13) 

where the most current temperature values are 
used at those points where they are available. 
Then, the temperature $2; ’ is evaluated as 

where o is the ex~apolation factor. On the 
basis of preliminary computational experi- 
ments, it was found that the most rapid con- 
vergence of the iteration scheme was achieved 
with an o value of approximately 1.95. 

The boundary condition for large p, equation 
(4c), was applied at p = 1500 in two alternate 
ways, either as 9 = 0 or as 9 = l/p. The 9 
solutions corresponding to these alternate rep- 
resentations of the boundary conditions were 
essentially identical. 

A total of 4619 mesh points were employed 
in the computations, the dis~ibution of the 
points being made to accommodate the rapidity 
of the temperature variations. 

Once the temperature field has been de- 
termined, various quantities of interest may be 
evaluated. Of particular relevance to the sub- 
sequent treatment of the interaction between 
the solid and the contiguous cylindrical con- 
ductor, Fig. i(a), is the rate of heat transfer 
passing through the circular area 0 < p < 1 
on the surface. To this end, let QT be defmed as 

1 

QT = 2~ Pdp 
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7” 

= 2nBi Sz=opdp 
s 
1 

sin cp dqo (15b) 

0 

in which jj is any value of the radial coordinate 
p > 1. The derivative (&i,GZ)z,, that would 
otherwise appear in the first term of equation 
(15b) has been replaced by W9 in accordance 
with equation (4b). 

By making use of equation (2), it is readily 
demonstrated that the rate of heat transfer Qj 
passing through the circular area 0 < p < 1 
on the surface is given by 

Qj = r&?;: - Tw)QT + h&(Tm - T,) (16) 

where the frost term stems from the disturbance 
temperature field and the second term stems 
from the temperature field in the absence of 
the local surface heat sink. Therefore, Qr may 
be regarded as a dimensionless heat transfer 
rate associated with the disturbance tempera- 
ture field. 

Numerical values of Qj* were evaluated from 
both equations (Isa) and (15b), the indicated 
integrations being performed by both Simp- 
son’s rule and the trapezoidal rule. Inasmuch 
as equation (15b) avoids the singuI~ity in 
(&9/&Z),-, at p = 1, the QT obtained from its 
evaluation are believed to be more accurate 
than those obtained from the evaluation of 
equation (15a). The Simpson’s rule and trape- 
zoidal integrations yielded essentially identical 
results. Since the 9 solutions depend para- 
metrically only on the Biot number Bi, so also 
do the numerical values of QT. 

Some indication of the accuracy of the present 
solutions may be made by comparing the Q; 
value of 4.001 for & = 0 with the exact result 
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QT = 4 [2]. The level of agreement is excellent, 
thereby leading confidence to the accuracy of 
the present results. Further comparison cannot 
be made inasmuch as no other numerical 
information on the problem is available in the 
literature besides that cited above. 

Numerical results for QT, as well as for other 
quantities of interest, will be presented in the 
next section. 

HEAT TRANSFER AND TEMPERATURE RESULTS 

Solutions for the dimensionless disturbance 
temperature were carried out for parametric 

The significance of the quantity QT has 
already been discussed. It is a dimensionless 
heat transfer rate associated with the distur- 
bance temperature field. In particular, due to 
the disturbance temperature field, the rate of 
heat transfer passing through the circular 
area 0 < (r/rJ < 1 on the surface is r&T, - 
T,)QT [see equation (16)]. The dependence of 
QT on the Biot number is shown in Fig. 3 for 
the range 0 < R < 10. An inset is also provided 
to facilitate accurate reading of QT in the range 
0 < BE < 1, where high reading accuracy would 
otherwise be difficult to achieve owing to the 
sharp rise of the curve. 

Qj 

values of the Biot number a( = hr,/k) in the Inspection of the figure shows that Qr 
range O-10. Heat transfer and temperature increases monotonically with increasing R. This 
results based on these solutions will now be trend is physically reasonable, inasmuch as the 
presented. convective heat loss in the region r/r0 > 1 

Bi=hro/k 

FIG. 3. Dimensionless heat transfer rate associated with the disturbance temperature field. 
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increases with increasing Bi, thereby necessitat- 
ing a corresponding increase in the inflow of heat 
through the circular region 0 < r/r0 < 1. 

As will be demonstrated later, the results for 
Qf will play a key role in the evaluation of 
temperature measurement errors as well as in 
the calculation of heat transfer rates for pin 
fins and for cylindrical conductors in general. 

The next pair of figures also deals with results 
which pertain to the surface of solid, but for 
the region r/r0 > 1 (the region where convective 
exchange takes place). Let the surface tem- 
perature distribution T(r/r,, x/2) zzqurfand, con- 
sistent with equation (2),t let 

%urf = TV - Tsu,f 
T,-lj' 

(17) 

Since T, - Tj represents the magnitude of the 
imposed temperature disturbance, the distribu- 
tion of 9,, with r/r0 gives the decay of the 
imposed disturbance along the surface. This 
information is presented in Fig. 4, where the 
various curves are parameterized by the Biot 
number hr,/k. The continuation of the curves 
for larger r/r0 is shown in the inset. 

From the figure, it is seen that the decay of the 
temperature disturbance is relatively rapid in 
the neighborhood of r/r0 = 1 and becomes 
more gradual at larger r,ho. The magnitude of 
the Biot number has a significant effect on the 
rapidity of the decay, with the decay being 
markedly faster at higher values of Biot number. 
Thus, for example, a 5 per cent residue of the 
imposed disturbance is achieved at r/r,, = 13 
and 1.4, respectively for Biot numbers of 0 and 
10. 

Whereas 19,rf compares the local tempera- 
ture disturbance T, - TaJrr with the imposed 
disturbance T, - Tj, one may be equally in- 
terested in comparing the local disturbance with 
the temperature I; - T,, which is charac- 
teristic of the problem. Indeed, it appears 
reasonable to regard the ma~itude of the ratio 

CT, - LMT, - T,) as an indicator of whether 
or not the disturbance has a locally significant 
effect on the thermal processes at the surface 
(e.g. on the local convective heat loss). It is 
readily verified that 

The first bracketed quantity on the right is 
given by Fig. 4, while the second bracket 
represents a constant, the determination of 
which will be discussed later. Thus, the distribu- 
tion curves for (T, - T,,,)/( T, - T,) are identi- 
cal to those of Fig. 4, except for a multiplicative 
constant. 

On the basis of the foregoing, one may esti- 
mate the region of influence of the disturbance. 
Suppose that the disturbance is judged to have 
negligible influence when (T, - T,,,)/( T, - T,) 
c$ 0.01. If (T, - ~)/(T~ - T,) = O*l,* then the 
aforementioned condition is met when r/r, = 6 
and 1.2, respectively for Biot numbers of 0 and 
10. It may thus be concluded that the region 
of influence of the disturbance is not very large. 

The results of Fig. 4 may also be employed 
to calculate the local surface heat Bux in the 
region r/r0 > 1. Upon applying Fourier’s law 
to equation (2), there follows 

qro 
MT, - Tm) 

in which equation (4b) has been used. Within the 
braces, the first term corresponds to the local 
surface heat flux in the absence of the dis- 
turbance, while the second term is due to the 
disturbance. The distribution curves of ‘& are 
those of Fig. 4. 

Figure 5 has been prepared to illustrate the 
surface variation of the local heat flux. The 
figure is subdivided into three sections, re- 
spectively for Bi = O-1,1 and 10. In each section, 
curves of qro/k(Tw - T,) are. plotted as a 
function of r/r0 for parametric values of (T, - 

t Note that T = T, when z = 0. * A high value if the disturbance is due to a thermocouple. 
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FIG. 4. Surface temperature disturbance (T, - T,,,,) relative to the imposed disturbance 

(L - 7;). 
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I.5 2 2.5 3 

r/r0 

FIG. 5. Local surface heat flux. 

IJ/(T, - T,) ranging from 0 to 0.5. The results 
of the figure show that the lower the value of 
the Biot number, the more sensitive is the local 
surface heat flux to the presence of the dis- 
turbance. In particular, the range of influence 
of the disturbance increases substantially as the 
Biot number is reduced. 

Attention is now turned to the temperature 
distribution within the solid. A meaningful 
dimensionless representation of the tempera- 
ture distribution, involving the known quan- 
tities T, and T,, is embodied in the grouping 
(7’ - T,)/(T, - T,). From equation (2), one has 

T - T, 

T, - T, 
=Biz-9 

T, - Tj 

[ 1 T, - T, . (20) 

It is seen that the temperature field consists 

of two components: a linearly increasing por- 
tion corresponding to the absence of the 
surface heat sink and a disturbance portion 
due to the surface sink. In the special case of 
Bi = 0, the first component vanishes. Repre- 
sentative temperature distributions are pre- 
sented herein for two Biot numbers, 0 and 1. 

Considering first the case of I3 = 0, it is 
seen that the distribution of (T - T,)/(T, - T,) 
is, except for a multiplicative constant, the same 
as the distribution of 9. Therefore, it suffices to 
present only the 9 distribution. A contour 
diagram, showing lines of constant 9, has been 
constructed and appears in Fig. 6. The curves 
appearing therein are labeled according to the 
9 values they represent. In physical terms, the 
abscissa axis is the surface of the solid, while 
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the ordinate axis is the symmetry line that 
passes perpendicularly through the center of 
the circular region 0 < I < T,, which lies on the 
surface. This region itself is represented by the 
segment of the abscissa between 0 and 1. The 
spherical coordinates I, q are indicated on the 
figure, with the angles being marked along the 
upper and right-hand axes. 

r > r,,; where the adiabatic boundary condition 
prevails, the isotherms intersect the surface at 
right angles. 

It is also interesting to compare the findings 
of Fig. 6 with what would have resulted had 
the model of [l] been adapted. Following that 
model, it would have been assumed that the 
hemispherical region 0 < I < ro, 0 < cp < 7r/2 

0 0.5 I.0 
f/r0 

I.5 2.0 2.5 

FIG. 6. Isotherms of the disturbance temperature field within the solid, hr,/k = 0. 

Inspection of the figure reveals that in the 
neighborhood of the surface region r < ro, 
the isotherms are drawn tightly together and 
are nearly parallel to the trace of the circle. 
On the other hand, as the radial coordinate 
increases, the spacing between the isotherms 
becomes larger and the isotherms themselves 
tend to become semi-circular in form. Indeed, 
for positions characterized by sufficiently large 
T, the region 0 < r G r. on the surface appears 
to be, in effect, a point source (or sink) of heat. 
It may also be noted that at surface locations 

is isothermal with 9 = 1 throughout. This is 
clearly at variance with the results of Fig. 6. 
Furthermore, the aforementioned simplified 
model yields QT = 2x, which is substantially in 
error compared with the result Qf = 4. 

Consideration may now be given to the tem- 
perature distribution results for Bi = 1. As 
indicated in equation (20), the dimensionless 
temperature field (T - T,)/(T, - T,) is syn- 
thesized by superposing a linear contribution 
on the disturbance distribution 9, the latter 
being weighted by (T, - q)/(T, - T,). It is 
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revealing to examine both the disturbance and reason for this different behavior is that for 
the resultant temperature fields. To this end, I& > 0, the surface r > r. actively participates 
Figs. 7(a) and 7(b) have been prepared. The in the heat transfer process, causing 9 to drop 
first of these ligures is a contour diagram show- off rapidly with T at points adjacent to the sur- 
ing the isotherms of the disturbance tempera- face. 
ture 9. The structure of the figure is identical The resultant temperature field for Bi = 1 is 
to that of Fig. 6. There are, however, distinct shown in Fig. 7(b), wherein the contribution of 

3.0 , , , / 1 , , / , , ,, , I,’ I I I 

i 

2.0 2.5 

FIG. 7(a). Isotherms of the disturbance temperature field within the solid, hr,/k = 1. 

differences in the results appearing in Figs. 6 the 9 distribution of Fig. 7(b) is weighted by 
and 7(a). In particular, with increasing r, the (T. - T&r’,, - 7”) = 0.25. The isotherms are 
isotherms of Fig. 7(a) do not tend toward a labeled according to (T - T,)/(T, - Z&J. In the 
semi-circular shape as do those of Fig. 6. The absence of the surface heat sink, the isotherms 
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would be horizontal lines whose position is pictured in Fig. l(a).* Let T, denote the surface 
given by (T - T,)/(T, - T,) = z/rO. The pre- temperature in the absence of the thermocouple, 
sence of the sink causes a displacement of the while Tj is the temperature at the junction of 
isotherm pattern in the neighborhood of the sink. the thermocouple and the solid. Correspond- 
With increasing distance from the sink, the ingly, T, - q is the measurement error owing 
displacement of the isotherms diminishes rapidly to the presence of the thermocouple. The surface 

FIG. 7(b). Isotherms of the resultant temperature field within the solid. hr,;k = 1 and 
(T,. - TJ/(T, - T,) = 025. 

so that, for example, the 1.75 isotherm is very 
nearly coincident with the line z/r0 = l-75. A 
similar rapid damping of the isotherm shift is in 
evidence as one moves along the surface. 

ERRORS IN SURFACE TE~ERA~RE 
MEASUREMENT 

Consider now the case in which a thermo- 
couple is affvred to the surface of a solid as 

of the solid exchanges heat by convection with 
a fluid envjro~ent having tem~rature T, 
and heat transfer coefficient h. 

-___I ~.~ 
* It should be noted that most techniques of affixing the 

thermocouple to the surface (for instance, with epoxy or 
solder, or by welding) generally give rise to an irregular 
geometry in the neighborhood of the thermocouple-surface 
interface. The detailed study of the complex heat transfer 
processes in this region is beyond the scope. of the present 
investigation. 
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The junction temperature 1;- is unknown, and 
its determination is the goal of the forthcoming 
analysis. As a first step, it is necessary to 
describe the heat transfer processes in the 
thermocouple. Suppose that a thermocouple 
lead is made up of one or two metallic wires 
plus insulation. Heat is transported axially 
along the lead by conduction, with most of the 
heat carried by the wires. The insulation 
functions primarily as a thermal resistance for 
lateral heat flow from the surface of the wire 
(or wires) to the fluid environment. The thermal 
boundary layer surrounding the lead also 
plays a similar role, acting in series with the 
insulation. 

Let kA represent the conductivity-area pro- 
duct for axial heat conduction in the lead and 
let R be a thermal resistance such that 
(T - T,)/R is the rate of lateral heat loss per 
unit length of the lead. Then, adopting the one- 
dimensional model of tin theory, the energy 
balance on a unit length of lead can be written as 

nd2T T-T, o 
-= 

dx2 R 
(21) 

where x is the axial coordinate along the lead 
and T = T(x). If x = 0 denotes the junction 
of the thermocouple and the solid, and x = L 
is the other extremity of the thermocouple, 
then the boundary conditions may be stated as 

T(0) = 1;-, (dT,‘dx), = 0. (2la) 

The zero derivative condition at x = L is 
common in fin theory and is highly plausible in 
the present problem since L is generally much 
greater than the radius of the wire. 

The evaluation of kA and R is relatively 
straightforward when the lead consists of a 
single insulated or uninsulated metallic wire. 
When there are two wires, the evaluation of 
the aforementioned quantities requires some 
finesse, as is discussed in [9, lo]. In particular, 
if there are two wires each of radius rr, it is 
customary to think in terms of an equivalent 
single wire whose radius is r,, = 2,/r,. 

The solution of equations (21) and (21a) 
yields T = T(x), and subsequent application of 
Fourier’s law leads to an expression for the 
rate of heat transfer Qj passing through the area 
of contact between the thermocouple and the 
solid, that is 

Qj = (T, - ?;) J(kA/R) tanh [L/,/(XZR)]. (22) 

Continuity of heat flux at the junction of the 
thermocouple and the solid requires that the 
Qj expressed by equations (16) and (22) be 
identical. Upon equating the Qj and rearrang- 
ing, one gets 

in which 

x = J(mIR1 
7ET k ah [L/ J(mR)l. 

0 
(24) 

The quantity (T, - Tj> is the error in the 
temperature measurement owing to the pre- 
sence of the thermocouple, and (T, - TJ/( Tw - 
T,) is the relative error taken with respect to 
the characteristic temperature difference (T, - 
T,). x can be regarded as a ratio of conduc- 
tances, with J&Z/R) representing the geo- 
metric mean conductance of the thermocouple 
lead and r,k representing the conductance of 
the solid. QT is given as a function of the Biot 
number (= ~~o/k) in Fig. 3. 

The temperature measurement error is readily 
evaluated from equations (23) and (24). Figure 8 
has been prepared to illustrate the results. The 
lower portion of the figure spans the x range 
from 0 to 16, while the upper part of the figure 
facilitates accurate reading for the range of 
small x. The curves are parameter&d by the 
Biot number, which, for thermocouple applica- 
tions, is typically between 0 and 05 

When x > hr,/k and T, > T,, the measured 
temperature I;: is below the actual surface 
temperature T,. That is, the presence of the 
thermocouple causes a local depression in the 
surface temperature. Furthermore, for these 



302 D. K. HENNECKE and E. M. SPARROW 

conditions, increases in x accentuate the cylindrical conductors. In reality, the presence 
measurement error, while increases in hr,/k of the lln or conductor alters the temperature 
tend to reduce the temperature error. If the field of the solid, so that the base temperature 
thermocouple is extremely well insulated so of the tin or conductor is di~erent from T,. 

that R is very large, it is possible, at least in The effect of a thus-altered base temperature 

principle, that Tj will exceed T, (when T, > T,). on the heat transfer from fins and other cylindri- 

This possibility is, however, unlikely in practice. cal conductors will now be evaluated. 

FIG. 8. Temperature measurement error and fin heat transfer ratio 

HEAT TRANSFER FROM FINS AND OTHER Let Q denote the rate of heat transfer from 
CYLINDRICAL CONDUCTORS a pin fin or cylindrical conductor whose base 

In the computation of heat transfer rates for temperature ‘Zj is determined by the interaction 
pin tins, it is customary to assume that the fin between the fm (or conductor) and the solid to 
base temperature is equal to the surface tem- which it is affured. q can be evaluated directly 
perature T, of the solid in the absence of the from equations (23) and (24), where now, 
fin. A similar assumption is made in computing kA = kprg and R = (Zm,h~)-“, the subscript 
the heat transfer from other surface-mounted f denoting fin (or conductor). Furthermore, 
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from equation (22), it follows that Q N (T, - TJ. 
Next, denote by & the fin heat transfer com- 

puted in the conventional manner, that is, 
assuming that the base temperature is equal to 
T,. Thus, (z N (T, - I’,‘,) in accordance with 
equation (22). 

The effect of accounting for the true base 
temperature is manifested in the departure 
of Q/Q from unity. In light of the foregoing, 

Q/& = (Tj - TJCL - T,), or 

(25) 

where the temperature ratio appearing on the 
right-hand side of equation (25) is expressed by 
equation (23). A necessary condition for any 
properly designed fm is that x > hr,/k (other- 
wise the fm would diminish, rather than 
augment, the surface heat loss). Correspondingly, 
(T, - T$(T’,, - T,) > 0 and Q/Q < 1. That is, 
the accounting of the base temperature de- 
pression due to the presence of the tin gives a 
lower heat transfer rate than that calculated in 
the conventional manner. 

The Q/Q ratio is readily evaluated from 
equation (25) in conjunction with equations 
(23) and (24). In addition, numerical values of 
1 - (Q/Q) are plotted in Fig. 8 for parametric 
values of x and hr,/k. Keeping in mind that 
x > hr,/k for fins, it is seen that the effect of 
the base surface depression is accentuated with 
increasing x and is diminished with increasing 
hr,/k. In other words, the larger the tin heat 
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loss relative to that from the surface itself, the 
larger are the deviations of Q/Q from unity. 

If the surface-mounted conductor has a very 
low thermal conductivity (i.e. an insulator), the 
Q/Q may exceed unity. 
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2. 

3. 
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PUITS DE CHALEUR LOCAL SUR UNE SURFACE REFROIDIE PAR CONVECTION. 
APPLICATION A L’ERREUR SUR LES MESURES DE TEMPERATURE 

R&mm&Les processus thermiques associts avec la presence d’un puits (ou d’une source) de chaleur 
local sur la surface dun solide refroidie par convection sont analyses. Le puits est du a la presence dun 
thermocouple monm sur une surface, dune ailette en aiguille ou d’autres conducteurs mantes sur une 
surface. .Dans la premiere partie de l’article, les resultats du transport de chaleur et les distributions de 
temperature pour le solide sont determines en general, sans reference a des applications sptciliques. Les 
resultats sont alors appliqub au cas du thermocouple month sur une surface, et l’erreur sur la temperature 
mesuree et due a la presence du thermocouple est &al&e. 11s sont tgalement appliques aux ailettes en 
aiguille et ii d’autres conducteurs montb sur une surface, et les flux de chaleur sont calcults en tenant 
compte de la diminution de la temperature de la bass due a l’interaction entre l’ailette (ou le conducteur) 
et le solide. On trouve que le calcul classique qui n&lige la dimunution de la temperature de la base 

surestime les flux de chaleur. 
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ORTLICHE WARMESENKE AN EINER KONVEKTIV GEKUHLTEN 
OBERFLACHEE EINE ANWENDUNG AUF TEMPERATURMESSFEHLER 

Znsarnmenfasanng-Die thermischen Vorgange in Gegenwart einer iirtlichen Warmesenke (oder Quelle) 
an einer konvektiv gekilhlten Oberflache eines Kiirpers wurden analysiert. Die Senke wird durch ein 
oberflachenverbundenes Thermoelement, eine Nadelrippe oder andere oberflbhenverbundene Leiter 
dargestellt. Im ersten Teil der Arbeit wurden WBrmeiibergangsergebnisse und Temperaturverteilungen 
fiir den K&per allgemein bestimmt, ohne auf spezielle Anwendungen einzugehen. Die Ergebnisse werden 
dann auf den Fall des oberflachenverbundenen Thermoelements und auf den Temperaturmessfehler 
angewandt. Die Anwendung wird erweitert auf Nadelrippen und andere oberflachenverbundene Leiter. 
WPrmeiibergangskoeffiienten werden berechnet unter Beriicksichtigung der Depression der Basis- 
temperatur auf Grund der Rippenwirkung. Es zeigt sich, dass die iibliche Berechnung, unter Vernach- 

lassigung der Temperaturdepression zu grosse WB;rmeiibergangskoeffizienten ergibt. 

IIPMMEHEHME JIOKAJIbHOI’O TEHJIOBOI’O CTOKA HA HOBEPXHOCTkl 
nPLl OXJIAi’KaEHkifl CBOBOflHOm KOHBEKqkiEti @IR OlIPEflEJIEHWl 

ITOT’PEIIIHOCT~ nPld M?!MEPEHHW TEMnEPATYPhT 

~~AOTsqH~-AHann3lpyeTcR TeIKIOBOti IIPOIJWC IlpH IIWIH’IliI4 JIOKanbHOrO CTOKa (I1.W 

IICTOqHIIKa) TenJIa Ha nOBepXHOCTI1 TBepROrO TeJla, OXJIartc~aeMOii CB060AHOfi KOHBeKLJLleti. 

CTOK Terma co3aaemrr pacnonomemoti Ha nonepxnocrn nronbsaroi rephronapoti nnct 
XpylYlM npOBO~HIZKOM.B~epBO~~aCT~CTaTb~Ipe3y~bTaTbI~OTen~006MeHy~paC~pe~e~eH~w, 

TeMnepaTypbr npencTaBneHn B 06meM BllJre 6ea ccbrno~ Ha ‘IaCTHOe npRMeKeHAe. 3aTeM 

pe3y~bTaT~np~Me~~IoTC~~~~C~y~a~nOBepXHOCTHO~TepMOnap~.~~Yllc~eHanO~peUIHOCTb 

MsMepeHnrr TeMnepaTypbI, BbIaBaHHau HanwrmeM TephfonapbI. PaccMoTpeHo npnhfeHeHMe K 

6yJIaBO=IHbIM pe6paM H~pVI'AM PaCnOJIOxeHHbIM HanOBepXHOCTIlllpOBO~HMKaM.PaCCWlTaHbl 

c~0p0cTIf TenJIOO6MeHa c y'IeTOM IlUHllifieKllR TeMIIepaTypbI OCHOBaHIJR, BbI3BaHHOrO 

B3aHMOfiefiCTBMeM pe6pa (WI&f npOBOAHElKa) C TBepAblM TeJIOM. 06HapymeH0, VT0 06bIYHbIe 

~eT0xb1 pameTa, me He ywrbmaeTcx nommeme TemepaTypn ocxioBawwf, Ram 3ammrerme 
pe3yJIbTaTOB CKOpOCTH TenJIOO6MeHa. 


